Add Two Numbers II || LeetCode-445

Problem linkhttps://leetcode.com/problems/add-two-numbers-ii/#/description

You are given two non-empty linked lists representing two non-negative integers. The most significant digit comes first and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Follow up:

What if you cannot modify the input lists? In other words, reversing the lists is not allowed.

Example:

Input: (7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4)

Output: 7 -> 8 -> 0 -> 7

<问题描述>

给定两个非负整形的非空链表,整数的每一位以正常的顺序存储在链表中

你可以假定两个整数都没有前导的零

给出的addTwoNumbers函数应该以链表形式返回两个整数的和

输入:(7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4)

输出:7 -> 8 -> 0 -> 7

Approach #1 (利用reverse()函数反转链表)

Analysis

这道题是之前那道Add Two Numbers的拓展,可以看到这道题的最高位在链表的首位置,如果我们将链表反转一下,然后参考之前那道题的解决方法,问题就变得很容易了。关键在于如何实现链表反转函数reverse()。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
if (l1 == null && l2 == null) {
return null;
}
if (l1 == null) {
return l2;
}
if (l2 == null) {
return l1;
}
l1 = reverse(l1); // 链表l1反转
l2 = reverse(l2); // 链表l2反转
// resultList, resultNode, resultNext必须初始化,否则编译不通过
ListNode resultList = null; // 返回链表
ListNode resultNode = null; // 头节点
ListNode resultNext = null; // 每次新插入的节点
int carry = 0; // 进位
while(l1 != null && l2 != null) {
resultNext = new ListNode(l1.val + l2.val + carry);
carry = resultNext.val / 10; // 计算进位
resultNext.val = resultNext.val % 10; // 计算该位的数值
if (resultList == null) { // 头节点为空,即插入的节点为返回链表的第一个节点时
resultNode = resultNext;
resultList = resultNext;
}
else { // 头节点不为空
resultNode.next = resultNext;
resultNode = resultNext;
}
l1 = l1.next;
l2 = l2.next;
}
while (l1 != null) { // 链表l1比链表l2长,处理链表l1的高位
resultNext = new ListNode(l1.val + carry);
carry = resultNext.val / 10;
resultNext.val = resultNext.val % 10;
resultNode.next = resultNext;
resultNode = resultNext;
l1 = l1.next;
}
while (l2 != null) { // 链表l2比链表l1长,处理链表l2的高位
resultNext = new ListNode(l2.val + carry);
carry = resultNext.val / 10;
resultNext.val = resultNext.val % 10;
resultNode.next = resultNext;
resultNode = resultNext;
l2 = l2.next;
}
if (carry > 0) { // 最高位产生进位,需要新建节点进行存储
resultNext = new ListNode(carry);
resultNode.next = resultNext;
}
return reverse(resultList); // 返回的链表进行反转操作后再返回
}
// 单链表实现反转操作函数
public ListNode reverse(ListNode current) {
// initialization
ListNode previousNode = null;
ListNode nextNode = null;
while (current != null) {
// save the next node
nextNode = current.next;
// update the value of "next"
current.next = previousNode;
// shift the pointers
previousNode = current;
current = nextNode;
}
return previousNode;
}

Complexity

时间复杂度:O(n)

空间复杂度:O(1)O(n)

Approach #2 (利用栈的后进先出存储节点数据)

Analysis

这里题目要求不使用reverse()函数,反转链表而不修改链表顺序,还有一种方法是利用栈来转换。由于加法需要从最低位开始运算,而最低位在链表末尾,链表只能从前往后遍历,没法取到前面的元素,我们可以利用栈来保存所有的元素,然后利用栈的后进先出的特点就可以从后往前取数字了。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
public ListNode addTwoNumbers(ListNode l1, ListNode l2){
Stack<integer> stack1 = new Stack<integer>();
Stack<integer> stack2 = new Stack<integer>();
if (l1 == null && l2 == null) {
return null;
}
if (l1 == null) {
return l2;
}
if (l2 == null) {
return l1;
}
while (l1 != null) {
stack1.push(l1.val);
l1 = l1.next;
}
while (l2 != null) {
stack2.push(l2.val);
l2 = l2.next;
}
// resultNode, resultCurrent必须初始化
ListNode resultNode = new ListNode(0); // 头节点
ListNode resultCurrent = new ListNode(0); // 每次新插入的节点
int carry = 0; // 进位
while (!stack1.isEmpty() && !stack2.isEmpty()) {
resultCurrent = new ListNode(stack1.pop() + stack2.pop() + carry);
carry = resultCurrent.val / 10; // 计算进位
resultCurrent.val = resultCurrent.val % 10; // 计算该位的数值
// 构建链表方法:每次新建的节点插在head位置之前(头插法?)
resultCurrent.next = resultNode.next;
resultNode.next = resultCurrent;
}
while (!stack1.isEmpty()) { // 链表l1比链表l2长,处理链表l1的高位
resultCurrent = new ListNode(stack1.pop() + carry);
carry = resultCurrent.val / 10;
resultCurrent.val = resultCurrent.val % 10;
resultCurrent.next = resultNode.next;
resultNode.next = resultCurrent;
}
while (!stack2.isEmpty()) { // 链表l2比链表l1长,处理链表l2的高位
resultCurrent = new ListNode(stack2.pop() + carry);
carry = resultCurrent.val / 10;
resultCurrent.val = resultCurrent.val % 10;
resultCurrent.next = resultNode.next;
resultNode.next = resultCurrent;
}
if (carry > 0) { // 最高位产生进位,需要新建节点进行存储
resultCurrent = new ListNode(carry);
resultCurrent.next = resultNode.next;
resultNode.next = resultCurrent;
}
return resultNode.next;
}

Complexity

时间复杂度:O(n)

空间复杂度:O(1)O(n)

Powered by Hexo and Hexo-theme-hiker

Copyright © 2013 - 2019 kevinyangI All Rights Reserved.

UV : | PV :